浮力影院亚洲国产第一页,国产一区二区精品久,中文字幕在线不卡,久久久这里只有精品免费

      研究隊伍

      姓  名:
      宋春橋
      性  別:
      職  務(wù):
      研究室副主任
      職  稱(chēng):
      研究員
      學(xué)  歷:
      博士研究生
      通訊地址:
      江蘇省南京市北京東路73號
      電  話(huà):
      025-86882293
      郵政編碼:
      210008
      傳  真:
       
      電子郵件:
      cqsong@niglas.ac.cn

      簡(jiǎn)歷:

      工作簡(jiǎn)歷

      2017.12~今:   中國科學(xué)院南京地理與湖泊研究所,研究員

      2014.10~2017.11  美國加利福尼亞大學(xué)-洛杉磯(UCLA),博士后

      學(xué)習簡(jiǎn)歷

      2011.08~2014.07 香港中文大學(xué),地理與資源管理系,博士

      2013.04~2013.09 劍橋大學(xué),地理系,博士交換生

      2008.09~2011.06 中國科學(xué)院 地理科學(xué)與資源研究所,地理信息系統,碩士

      2004.09~2008.06 武漢大學(xué),資源與環(huán)境科學(xué)學(xué)院,學(xué)士


      研究領(lǐng)域:
      水文水資源遙感與全球變化,青藏高原環(huán)境與氣候變化影響
      社會(huì )任職:

      獲獎及榮譽(yù):
      2018年,入選江蘇省人才項目;
      2018年,入選江蘇省“333人才工程”學(xué)術(shù)技術(shù)帶頭人;
      2020年,獲教育部科學(xué)研究?jì)?yōu)秀成果獎自然科學(xué)二等獎 (3rd);
      2021年,國家人才項目結題優(yōu)秀(院)
      代表論著(zhù):

      主要論著(zhù)(一作/通訊):

      [1] Wu, Q., Ke, L., … & Song, C*. (2023). Satellites reveal hotspots of global river extent change[J]. Nature Communications, 14(1), 1587. (TOP)

      [2] Song, L., Song, C.*, Luo, S., Chen, T., Liu, K., Zhang, Y., & Ke, L. (2023). Integrating ICESat-2 altimetry and machine learning to estimate the seasonal water level and storage variations of national-scale lakes in China[J]. Remote Sensing of Environment, 294, 113657. (TOP)

      [3] Zhan, P., Song, C. *, Liu, K., Chen, T., Ke, L., Luo, S., & Fan, C. (2023). Can we estimate the lake mean depth and volume from the deepest record and auxiliary geospatial parameters? [J]. Journal of Hydrology, 128958. (TOP)

      [4] Feng, Y., Yang, L., Zhan, P., Luo, S., Chen, T., Liu, K., & Song, C*. (2023). Synthesis of the ICESat/ICESat-2 and CryoSat-2 observations to reconstruct time series of lake level[J]. International Journal of Digital Earth, 16(1), 183-209. (TOP)

      [5] Chen, T., Song, C. *, Zhan, P., & Fan, C. (2023). Densifying and Optimizing the Water Level Series for Large Lakes from Multi-Orbit ICESat-2 Observations[J]. Remote Sensing, 15(3), 780. (TOP)

      [6] Liang, X., Song, C. *, Liu, K., Chen, T., & Fan, C. (2023). Reconstructing centennial-scale water level of large pan-Arctic lakes using machine learning methods[J]. Journal of Earth Science.

      [7] Song, C.*, Fan, C. *, Zhu, J. *, Wang, J., Sheng, Y., Liu, K., ... & Ke, L. (2022). A comprehensive geospatial database of nearly 100 000 reservoirs in China[J]. Earth System Science Data, 14(9), 4017-4034. (TOP)

      [8] Song, C. *, Jiang, X. *, Fan, C., & Li, L. (2022). High-resolution circa-2020 map of urban lakes in China[J]. Scientific Data, 9(1), 1-14.

      [9] Song, C. *, Luo, S., Liu, K. *, Chen, T., Zhang, P., & Fan, C. (2022). Widespread declines in water salinity of the endorheic Tibetan Plateau lakes[J]. Environmental Research Communications, 4(9), 091002.

      [10] Luo, S., Song, C. *, Ke, L., Zhan, P., Fan, C., Liu, K., ... & Zhu, J. (2022). Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century[J]. Geophysical Research Letters, 49(3), e2021GL096676. (TOP)

      [11] Ke, L., Song, C. *, Wang, J., Sheng, Y., Ding, X., Yong, B., ... & Luo, S. (2022). Constraining the contribution of glacier mass balance to the Tibetan lake growth in the early 21st century[J]. Remote Sensing of Environment, 268, 112779. (TOP)

      [12] Zhan, P., Song, C. *, Luo, S., Ke, L., Liu, K., & Chen, T. (2022). Investigating different timescales of terrestrial water storage changes in the northeastern Tibetan Plateau[J]. Journal of Hydrology, 608, 127608. (TOP)

      [13] Jiang, X., Fan, C., Liu, K., Chen, T., Cao, Z., & Song, C*. (2022). Centenary covariations of water salinity and storage of the largest lake of Northwest China reconstructed by machine learning[J]. Journal of Hydrology, 612, 128095. (TOP)

      [14] Liu, K., & Song, C*. (2022). Modeling lake bathymetry and water storage from DEM data constrained by limited underwater surveys[J]. Journal of Hydrology, 604, 127260. (TOP)

      [15] Chen, T., Song, C. *, Luo, S., Ke, L., Liu, K., & Zhu, J. (2022). Monitoring global reservoirs using ICESat-2: Assessment on spatial coverage and application potential[J]. Journal of Hydrology, 604, 127257. (TOP)

      [16] Chen, T., Song, C. *, Zhan, P., Yao, J., Li, Y., & Zhu, J. (2022). Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions[J]. Science of The Total Environment, 807, 150772. (TOP)

      [17] Cheng, J., Song, C. *, Liu, K., Fan, C., Ke, L., Chen, T., ... & Yao, J. (2022). Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site[J]. Science of The Total Environment, 802, 149928. (TOP)

      [18] Chen, T., Song, C. *, Fan, C., Cheng, J., Duan, X., Wang, L., ... & Che, Y. (2022). A comprehensive data set of physical and human-dimensional attributes for China’s lake basins[J]. Scientific Data, 9(1), 1-15. 

      [19] Fan, C., Liu, K. *, Luo, S., Chen, T., Cheng, J., Zhan, P., & Song, C*. (2022). Detection of surface water temperature variations of Mongolian lakes benefiting from the spatially and temporally gap-filled MODIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 114, 103073. (TOP)

      [20] Liu, K., Na, J., Fan, C., Huang, Y., Ding, H., Wang, Z., ... & Song, C*. (2022). Large-Scale Detection of the Tableland Areas and Erosion-Vulnerable Hotspots on the Chinese Loess Plateau[J]. Remote Sensing, 14(8), 1946. (TOP)

      [21] Ke, L., Zhang, J., Fan, C., Zhou, J., & Song, C*. (2022). Large-Scale Monitoring of Glacier Surges by Integrating High-Temporal-and-Spatial-Resolution Satellite Observations: A Case Study in the Karakoram[J]. Remote Sensing, 14(18), 4668. (TOP)

      [22] Ke, L., Xu, J., Fan, C., Liu, K., Chen, T., Wang, S., ... & Song, C*. (2022). Remote sensing reconstruction of long-term water level and storage variations of a poorly-gauged river in the Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 40, 101020.

      [23] Song, L., Song, C. *, Zhan, P., Chen, T., Liu, K., & Jing, H. (2022). Seasonal amplitude of water storage variations of the Yangtze-Huai Plain lake group: Implication for floodwater storage capacity[J]. Frontiers in Environmental Science, 33.

      [24] Chen, T., Song, C. *, Zhan, P., & Ma, J. (2022). How Many Pan-Arctic Lakes Are Observed by ICESat-2 in Space and Time? [J]. Remote Sensing, 14(23), 5971. (TOP)

      [25] Chen, T., Song, C. *, Fan, C., Gao, X., Liu, K., Li, Z., ... & Zhan, P. (2022). Remote sensing modeling of environmental influences on lake fish resources by machine learning: A practice in the largest freshwater lake of China[J]. Frontiers in Environmental Science, 1233.

      [26] Liu, K., Song, C. *, Zhan, P., Luo, S., & Fan, C. (2022). A Low-Cost Approach for Lake Volume Estimation on the Tibetan Plateau: Coupling the Lake Hypsometric Curve and Bottom Elevation[J]. Frontiers in Earth Science, 10, 925944.

      [27] Fan, C., Song, C. *, Liu, K., Ke, L., Xue, B., Chen, T., ... & Cheng, J. (2021). Century‐Scale Reconstruction of Water Storage Changes of the Largest Lake in the Inner Mongolia Plateau Using a Machine Learning Approach[J]. Water Resources Research, 57(2), e2020WR028831. (TOP)

      [28] Fan, C., Song, C. *, Li, W., Liu, K., Cheng, J., Fu, C., ... & Wang, J. (2021). What drives the rapid water-level recovery of the largest lake (Qinghai Lake) of China over the past half century? [J]. Journal of Hydrology, 593, 125921. (TOP)

      [29] Chen, T., Song, C. *, Ke, L., Wang, J., Liu, K., & Wu, Q. (2021). Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements[J]. Journal of Hydrology, 593, 125781. (TOP)

      [30] Liu, K.#, Ke, L.#, Wang, J., Jiang, L., Richards, K. S., Sheng, Y., ... & Song, C*. (2021). Ongoing drainage reorganization driven by rapid lake growths on the Tibetan Plateau[J]. Geophysical Research Letters, 48(24), e2021GL095795. (TOP)

      [31] Luo, S., Song, C. *, Zhan, P., Liu, K., Chen, T., Li, W., & Ke, L. (2021). Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2[J]. Catena, 200, 105177. (TOP)

      [32] Song, L., Song, C. *, Luo, S., Chen, T., Liu, K., Li, Y., ... & Xu, J. (2021). Refining and densifying the water inundation area and storage estimates of Poyang Lake by integrating Sentinel-1/2 and bathymetry data[J]. International Journal of Applied Earth Observation and Geoinformation, 105, 102601. (TOP)

      [33] Cheng, J., Song, C. *, Liu, K., Ke, L., Chen, T., & Fan, C. (2021). Regional assessment of the potential risks of rapid lake expansion impacting on the Tibetan human living environment[J]. Environmental Earth Sciences, 80(4), 1-14.

      [34] Zhan, P., Song, C. *, Luo, S., Liu, K., Ke, L., & Chen, T. (2021). Lake level reconstructed from DEM-based virtual station: Comparison of multisource DEMs with laser altimetry and UAV-LiDAR measurements[J]. IEEE Geoscience and Remote Sensing Letters, 19, 1-5.

      [35] Zhu, J., Song, C. *, Ke, L., Liu, K., & Chen, T. (2021). Remote Sensing Investigation of the Offset Effect between Reservoir Impoundment and Glacier Meltwater Supply in Tibetan Highland Catchment[J]. Water, 13(9), 1307.

      [36] Ma, J., Song, C. *, & Wang, Y. (2021). Spatially and temporally resolved monitoring of glacial lake changes in Alps during the recent two decades. Frontiers in Earth Science, 760.

      [37] Zhu J, Song C*, Wang J , & Ke, L. (2020). China's inland water dynamics: the significance of water body types [J]. Proceedings of the National Academy of Sciences (PNAS), 117(25), 13876-13878. (TOP)

      [38] Ke L, Song C*, Yong B, et al. (2020). Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau[J]. Remote Sensing of Environment, 242: 111777. (TOP)

      [39] Liu, K., Song, C. *, Wang, J., Ke, L., Zhu, Y., Zhu, J., ... & Luo, Z. (2020). Remote sensing‐based modeling of the bathymetry and water storage for channel‐type reservoirs worldwide. Water Resources Research, 56(11), e2020WR027147. (TOP)

      [40] Deng X, Song C*, Liu K, et al. (2020). Remote sensing estimation of catchment-scale reservoir water impoundment in the upper Yellow River and implications for river discharge alteration[J]. Journal of Hydrology, 124791. (TOP)

      [41] Wu Q, Song C*, Liu K, et al. (2020). Integration of TanDEM-X and SRTM DEMs and Spectral Imagery to Improve the Large-Scale Detection of Opencast Mining Areas[J]. Remote Sensing, 12(9): 1451. (TOP)

      [42] Song C*, Sheng Y, Zhan S, et al. (2020). Impact of amplified evaporation due to lake expansion on the water budget across the inner Tibetan Plateau[J]. International Journal of Climatology, 40(4): 2091-2105.

      [43] Liu K, Song C*, Ke L, et al. (2020). Automatic watershed delineation in the Tibetan endorheic basin: A lake-oriented approach based on digital elevation models[J]. Geomorphology, 107127.

      [44] Zhan, P., Song, C. *, Wang, J., Li, W., Ke, L., Liu, K., & Chen, T. (2020). Recent abnormal hydrologic behavior of Tibetan lakes observed by multi-mission altimeters. Remote Sensing, 12(18), 2986. (TOP)

      [45] Zhan S, Song C*, Wang J, et al. (2019). A global assessment of terrestrial evapotranspiration increase due to surface water area change[J]. Earth's Future, 7(3): 266-282. (TOP)

      [46] Liu K, Song C*, Ke L, et al. (2019). Global open-access DEM performances in Earth's most rugged region High Mountain Asia: A multi-level assessment[J]. Geomorphology, 338: 16-26.

      [47] Zhang W, Pan H, Song C*, et al. (2019). Identifying emerging reservoirs along regulated rivers using multi-source remote sensing observations[J]. Remote Sensing, 11(1): 25. (TOP)

      [48] Luo S, Song C*, Liu K, et al. (2019). An effective low-cost remote sensing approach to reconstruct the long-term and dense time series of area and storage variations for large lakes[J]. Sensors, 19(19): 4247.

      [49] Wang J*#, Song C#, Reager J T, et al. (2018). Recent global decline in endorheic basin water storages[J]. Nature Geoscience, 11(12): 926-932. (# Equally contributed). (TOP)

      [50] Song C*, Ke L, Pan H, et al. (2018). Long-term surface water changes and driving cause in Xiong’an, China: From dense Landsat time series images and synthetic analysis[J]. Science Bulletin, 63(11): 708-716. (TOP)

      [51] Wu Q, Liu K, Song C*, et al. (2018). Remote sensing detection of vegetation and landform damages by coal mining on the Tibetan Plateau[J]. Sustainability, 10(11): 3851.

      [52] Song C*, Sheng Y, Wang J, et al. (2017). Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas[J]. Geomorphology, 280: 30-38.

      [53] Sheng Y*, Song C, Wang J, et al. (2016). Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery[J]. Remote Sensing of Environment, 185: 129-141. (TOP)

      [54] Song C*, Sheng Y*, Ke L, et al. (2016). Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes[J]. Journal of Hydrology, 540: 504-514. (TOP)

      [55] Song C, Sheng Y*. (2016). Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis[J]. Climatic Change, 135(3-4): 493-507.

      [56] Song C*, Huang B*, Ke L, et al. (2016). Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins[J]. Global and Planetary Change, 145: 20-29. (TOP)

      [57] Song C*, Ke L, Richards K S, et al. (2016). Homogenization of surface temperature data in High Mountain Asia through comparison of reanalysis data and station observations[J]. International Journal of Climatology, 36(3): 1088-1101.

      [58] Song C, Ye Q*, Cheng X. (2015). Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations[J]. Science Bulletin, 60(14): 1287-1297. (TOP)

      [59] Song C*, Ke L*, Huang B, et al. (2015). Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective?[J]. Global and Planetary Change, 124: 1-9. (TOP)

      [60] Song C*, Huang B*, Ke L. (2015). Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multi‐mission satellite altimetry[J]. Hydrological Processes, 29(12): 2769-2781.

      [61] Song C*, Ye Q*, Sheng Y, et al. (2015). Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003–2014[J]. Water, 7(9): 4685-4700.

      [62] Song C, Huang B*, Richards K, et al. (2014). Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes?[J]. Water Resources Research, 50(4): 3170-3186. (TOP)

      [63] Song C, Huang B*, Ke L, et al. (2014). Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 26-37. (TOP)

      [64] Ke L, Song C*. (2014). Remotely sensed surface temperature variation of an inland saline lake over the central Qinghai–Tibet Plateau[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 98: 157-167. (TOP)

      [65] Song C, Ke L*. (2014). Recent dramatic variations of China’s two largest freshwater lakes: Natural process or influenced by the Three Gorges Dam?[J]. Environmental Science & Technology, 48(3): 2086-2087. (TOP)

      [66] Song C*, Huang B*, Ke L, et al. (2014). Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts[J]. Journal of Hydrology, 514: 131-144. (TOP)

      [67] Song C, Huang B*, Ke L. (2014). Inter‐annual changes of alpine inland lake water storage on the Tibetan Plateau: Detection and analysis by integrating satellite altimetry and optical imagery[J]. Hydrological Processes, 28(4): 2411-2418.

      [68] Song C, Huang B*, Ke L. (2013). Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J]. Remote Sensing of Environment, 135: 25-35. (TOP)

      [69] 宋利娟, 景海濤, 徐嘉慧, 陳探, 張大鵬, & 宋春橋*. (2023). 聯(lián)合哨兵衛星系列雷達與光學(xué)影像的洞庭湖水域面積變化高時(shí)空分辨率監測[J]. 遙感學(xué)報, 1-16 DOI: 10.11834/jrs.20221562. (EI)

      [70] 童潔, 高永年, 詹鵬飛, & 宋春橋*. (2023). 湖冰遙感研究進(jìn)展[J]. 遙感學(xué)報. (EI)

      [71] 徐嘉慧, 王世東, 宋利娟, 張大鵬, & 宋春橋*. (2022). 雅魯藏布江干流河寬時(shí)空變化遙感監測及水文氣象響應[J]. 地理學(xué)報, 77(11), 2862-2877. (EI)

      [72] 張聞松, & 宋春橋*. (2022). 中國湖泊分布與變化: 全國尺度遙感監測研究進(jìn)展與新編目[J]. 遙感學(xué)報. 26(01), 92-103. (EI)

      [73] 張大鵬, 景海濤, 劉凱, 馬勁松, 徐嘉慧, 宋利娟, & 宋春橋*. (2022). 中國地表持續型消失水體空間分布數據集(1980s-2019)[J]. 全球變化數據學(xué)報(中英文), 6(02), 265-272+437-444.

      [74] 馬勁松, 宋春橋*, 王艷君, 宋利娟, &張大鵬. (2022). 亞洲冰川湖泊分類(lèi)與最大分布數據集(1980s-2019)[J]. 全球變化數據學(xué)報(中英文), 6(02), 200-208+372-380.

      [75] 程儉, 劉昌華, 劉凱, 武建雙, 范晨雨, 薛濱, ... & 宋春橋*. (2021). 2004 年以來(lái)青海湖快速擴張對人居設施與草地的潛在影響[J]. 湖泊科學(xué), 33(3), 922-934. (EI)

      [76] 詹鵬飛, 劉凱, 張玉超, 馬榮華, & 宋春橋*. (2021). 青藏高原不同氣候子區典型湖泊多時(shí)間尺度變化的遙感對比研究[J]. 遙感技術(shù)與應用, 36(1), 90-102.

      [77] 姚杰鵬, 楊磊庫, 陳探, & 宋春橋*. (2021). 基于 Sentinel-1, 2 和 Landsat 8 時(shí)序影像的鄱陽(yáng)湖濕地連續變化監測研究. 遙感技術(shù)與應用, 36(4), 760-776.

      [78] 宋春橋*, 詹鵬飛, & 馬榮華. (2020). 湖泊水情遙感研究進(jìn)展[J]. 湖泊科學(xué), 32(5), 1406-1420. (EI)

      [79] 羅竹, 劉凱, 張春亢, 鄧心遠, 馬榮華, & 宋春橋*. (2020). DEM 在湖泊水文變化研究中的應用進(jìn)展[J]. 地球信息科學(xué)學(xué)報, 22(7), 1510-1521. (EI)

      [80] 宋春橋, 葉慶華*, & 程曉. (2015). 基于 ICESat/CryoSat-2 衛星測高及站點(diǎn)觀(guān)測的納木錯湖水位趨勢變化監測[J]. 科學(xué)通報, (21), 2048-2048. (SCI & EI)

      [81] 宋春橋, 游松財*, 柯靈紅, 劉高煥, & 鐘新科. (2012). 藏北高原典型植被樣區物候變化及其對氣候變化的響應[J]. 生態(tài)學(xué)報, 32(4), 1045-1055. (EI)

      [82] 宋春橋*, 游松財, 柯靈紅, 劉高煥, & 鐘新科. (2012). 藏北高原土壤濕度MODIS遙感監測研究[J]. 土壤通報, 43(02), 294-300.

      [83] 宋春橋, 游松財*, 劉高煥, 柯靈紅, & 鐘新科. (2012). 那曲地區草地植被時(shí)空格局與變化及其人文因素影響研究[J]. 草業(yè)學(xué)報, 21(3), 1-10.

      [84] 傅新, 宋春橋*, & 鐘新科. (2012). 藏北高原土壤濕度時(shí)空變化分析[J]. 水科學(xué)進(jìn)展, 23(4), 464-474. (EI)

      [85] 宋春橋*, 游松財, 沈振西, 柯靈紅, & 鐘新科. (2011). 藏北地區草地補播及放牧制度對草地覆蓋影響的遙感監測研究[J]. 草地學(xué)報, 19(1), 58-62.

      [86] 宋春橋*, 游松財, 柯靈紅, & 劉高煥. (2011). 藏北地區三種時(shí)序NDVI重建方法與應用分析[J]. 地球信息科學(xué)學(xué)報, 13(01), 133-143. (EI)

      [87] 宋春橋*, 柯靈紅, 游松財, 劉高煥, & 鐘新科. (2011). 基于TIMESAT的3種時(shí)序NDVI擬合方法比較研究—以藏北草地為例[J]. 遙感技術(shù)與應用, 26(2), 147-155.

      [88] 宋春橋, 游松財*, 劉高煥, 柯靈紅, & 鐘新科. (2011). 基于TVDI的藏北地區土壤濕度空間格局[J]. 地理科學(xué)進(jìn)展, 30(5), 569-576.

      [89] 宋春橋, 游松財*, 柯靈紅, 劉高煥, & 鐘新科. (2011). 藏北高原植被物候時(shí)空動(dòng)態(tài)變化的遙感監測研究[J]. 植物生態(tài)學(xué)報, 35(8), 853-863. (EI)

      [90] 宋春橋, 游松財*, 柯靈紅, 劉高煥, & 鐘新科. (2011). 藏北高原地表覆蓋時(shí)空動(dòng)態(tài)及其對氣候變化的響應[J]. 應用生態(tài)學(xué)報, 22(8), 2091-2097.

      主要合作論著(zhù):

      [1] 《Comprehensive Geographic Information Systems》,Elsevier出版集團,共同主編.

      [2] Sikder M S*, Wang J*, Allen, G. H., Sheng, Y., Yamazaki, D., Song, C., ... & Pavelsky, T. M. Lake-TopoCat: A global lake drainage topology and catchment database[J]. Earth System Science Data, 2023: 1-42. (TOP)

      [3] Wang, J. *, Walter, B. A., Yao, F., Song, C., Ding, M., Maroof, A. S., ... & Wada, Y. (2022). GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations[J]. Earth System Science Data, 14(4), 1869-1899. (TOP)

      [4] Yi S*, Song C, Heki K, et al. Satellite-observed monthly glacier and snow mass changes in Southeast Tibet: implication for substantial meltwater contribution to the Brahmaputra[J]. Cryosphere, 2020. (TOP)

      [5] Qiu, B., Li, W., Wang, X., Shang, L., Song, C., Guo, W., & Zhang, Y*. (2019). Satellite-observed solar-induced chlorophyll fluorescence reveals higher sensitivity of alpine ecosystems to snow cover on the Tibetan Plateau. Agricultural and Forest Meteorology, 271, 126-134. (TOP)

      [6] Yi S*, Song C, Wang Q, et al. (2017). The potential of GRACE gravimetry to detect the heavy rainfall‐induced impoundment of a small reservoir in the upper Yellow River[J]. Water Resources Research, 53(8): 6562-6578. (TOP)

      [7] Wada, Y. *, Reager, J. T., Chao, B. F., Wang, J., Lo, M. H., Song, C., ... & Gardner, A. S.. (2017). Recent changes in land water storage and its contribution to sea level variations[J]. Surveys in Geophysics, 38(1): 131-152. (TOP)

      [8] Nie, Y *, Sheng, Y, Liu, Q, Liu, L, Liu, S, Zhang, Y, & Song, C. (2017). A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015[J]. Remote Sensing of Environment, 189: 1-13. (TOP)

      [9] Cui Y, Lin J*, Song C, et al. (2016). Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013[J]. Atmospheric Chemistry and Physics, 16(10): 6207. (TOP)

      [10] Ke L, Ding X*, Song C. (2015). Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory[J]. Remote Sensing of Environment, 168: 13-23. (TOP)


      承擔科研項目情況:

      1. 2017.12~2021.12,湖泊流域水文遙感與全球變化,國家人才計劃青年項目,項目負責人;

      2. 2020.01~2023.12,典型湖泊群水儲量估算模型研究——以青藏高原湖區為例,國家自然科學(xué)基金委面上項目,項目負責人;

      3. 2018.12~2022.12,漁業(yè)生境退化和生物多樣性演變的評估理論與方法,國家重點(diǎn)研發(fā)計劃項目,課題負責人;

      4. 2022.11~2026.10,地球表層系統關(guān)鍵參數自動(dòng)生成與挖掘分析,國家重點(diǎn)研發(fā)計劃項目,課題負責人;

      5. 2019.01~2023.12,美麗中國-“原真地理特征與生態(tài)文明模式時(shí)空規律及形成機制”,中國科學(xué)院A類(lèi)戰略性先導科技專(zhuān)項子課題,子課題負責人;

      6. 2018.12~2022.12,村鎮建設資源環(huán)境承載力測算系統開(kāi)發(fā),國家重點(diǎn)研發(fā)計劃項目,核心骨干/項目中心組;

      7. 2019.11~2022.10,亞洲水塔動(dòng)態(tài)變化與影響,國家第二次青藏高原綜合科學(xué)考察研究,核心骨干.